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To give a first idea of our method consider a (quasi-
periodic) function of one variable such that in its FourierFor efficiently treating quasi-periodic and multiscale problems

numerically, it is here proposed to change the number of space representation the only wavenumbers present are of the
dimensions which is then multiplied by the number of different form k 5 n 1 mt, where n and m are signed integers and
(incommensurable or widely separated) scales occurring in the t is irrational (the decomposition of k is thus unique).
problem. Then, all calculations are performed in this higher-

Such a function has the following (generalized) Fourierdimensional space. In the higher-dimensional space the problem
representation:is a standard periodic problem where, in the presence of dissipation,

only the lower-order harmonics are relevant and one can thus use
all the standard spectral methods for periodic functions with a rela- f(x) 5 O

n,m
f̂(n, m) exp[2if(n 1 mt)x]. (1)

tively small number of modes. The method is validated, using the
Burgers equation, and the two-dimensional linearized Navier–
Stokes equation, by comparison with standard spectral or pseudo-

A two-dimensional 2f-periodic function may then be de-spectral methods (in which the dimensionality of the space is not
changed but very high resolution is used). For physical problems fined by
of interest in which different widely separated scales occur, standard
methods require very large computer resources; the gain in storage f2(x, y) 5 O

n,m
f̂ (n, m) exp[2if(nx 1 my)], (2)and CPU resources, when using the ‘‘higher dimension’’ method,

is typically proportional to the ratio of scales. Q 1997 Academic Press

such that f (x) is recovered by restriction to the line y 5
tx of slope t.1. INTRODUCTION

Our numerical method for dealing with PDEs involving
such functions will be to change the number of space di-In a variety of physical problems we have to deal with
mensions which is multiplied by the number of differentfields involving more than one scale of variation in one or
(incommensurable or large) scales occurring in the prob-several space or time variables. A standard example is the
lem. Then, all calculations are to be performed in thisone-dimensional Schrödinger equation with quasi-periodic
higher-dimensional space. In that space the problem be-coefficients: the potential is a combination of two periodic
comes a periodic one which is handled by standard spec-functions such that the ratio of the periods t is irrational
tral methods.[1]. In the problem of turbulent transport, a velocity field

The underlying mathematical ideas are presented in Sec-with a scale a is prescribed and a passive contaminant is
tion 2. At first sight it seems strange to be able to saveintroduced on a scale 1/t times larger with t ! 1 (see, e.g.,
computer resources and simplify calculations by ‘‘artifi-[2, Sect. 9.6]). Numerical methods based on Fourier series,
cially’’ increasing the dimension of space, but this will be-such as the spectral techniques [3], are not easily applied to
come clear in Sections 3 and 4, where we apply our methodsuch problems. Indeed, when using a standard spectral tech-

nique for quasi-periodic situations, we must use a rational to treat multiscale and quasi-periodic problems. The basic
idea in the two cases is the same; the details however areapproximation n1/n2 to the irrational t, where n1 and n2 are

integers; an accurate approximation requires then extremely quite different. In Subsections 3.2 and 4.2 we give examples
of our method being applied to specific problems in thehigh resolution. Similarly, in the multiscale case t ! 1, a huge

range of wavenumbers is required, since all scales, including multiscale and quasi-periodic case, respectively.
The idea of multiplying the dimension of a problem byintermediate ones, have to be resolved. How can we adapt

the standard Fourier methods for such problems and keep the number of different scales is a standard procedure
both in multiscale analysis, where the ‘‘slow’’ variables arethe CPU and storage requirements as low as possible?
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supposed to be independent of the ‘‘fast’’ variables (see,
e.g., [4]), and in the quasi-periodic case where it is well
known to scientists working in celestial mechanics (see,
e.g., [5]) and in the field of linear differential equations
with quasi-periodic coefficients (see, e.g., [1]). To the best
of our knowledge this idea has not yet been applied for
numerical purposes.

2. FROM TWO TO ONE DIMENSIONS ... AND BACK

We shall restrict our discussion to the case where only
two different scales occur; the extension to cases with more
than two scales is immediate. To explain our method of
extending the dimension of the problem we proceed back-
wards and explain first how, from a function depending
2f-periodically on two variables, we can obtain a function

FIG. 1. Two-dimensional unfolding (shown as circles) of the one-
of one variable with two scales. Consider a 2f-periodic dimensional clustering of modes for a multiscale situation (N 5 M 5 2).
function f2(x, y) of two variables, written in terms of its
Fourier series,

working with periodic functions considerably simplifies
f2(x, y) 5 O

n,m
f̂ (n, m) exp[2if(nx 1 my)]. (3) matters.

3. THE MULTISCALE CASE
The restriction (trace) of f2 to the line y 5 tx defines a one-
dimensional function by the following generalized one- 3.1. Theory
dimensional Fourier series,

We are interested in situations where two widely sepa-
rated scales are present, for example, a small-scale motion

f (x) 5 O
n,m

f̂1(n 1 mt) exp[2if(n 1 mt)x], (4) on a scale t ! 1 with a large-scale modulation on a scale
of order unity. In Fourier space this corresponds to having
wavenumbers of the form k 5 nK 1 m with K 5 t21. (Forwhere
the sake of simplicity K is a large even integer.)

As noted by Boyd [6] if there is a clear separation of
f̂1(n 1 mt) ; f̂ (n, m). (5) scales the only modes with appreciable excitation are clus-

tered around the harmonics of K, that is, they correspond
to values of m such that umu ! K. The typical situation isCan this process be inverted? If t is irrational there is a

single pair of signed integers such that n 1 mt 5 q and that the maximum value of unu and umu at which the series
can be truncated, denoted here N and M, respectively,the corresponding q’s are dense in R. Thus, from the one-

dimensional quasi-periodic restriction f (x) we can recon- depend on the accuracy required but not on the small
parameter t (although they depend on other control pa-struct the two-dimensional 2f-periodic function f2(x, y) in

a unique way. This will be used in Section 4. If t is rational rameters present).
Boyd [6] observed that one can omit the mostly unex-the decomposition q 5 n 1 mt is not unique unless we

put some restrictions on the range of variation of n and cited modes with umu . M and thereby considerably reduce
storage and CPU. At first sight the decimated structure ofm. For example, if t 5 1/K where K is an integer and we

set qK 5 k, we know that an arbitrary integer k may be modes, leaving only clusters around harmonics of K, is not
amenable to the use of pseudo-spectral methods (includingwritten uniquely as k 5 nK 1 m provided m takes at most

N consecutive values (Euclidean division). This will be FFTs). Actually, the decimated structure, when interpreted
in terms of the two-dimensional extension of Section 2, isused in Section 3 dealing with the multiscale case.

With the restrictions mentioned, the correspondence be- amenable to standard two-dimensional periodic pseudo-
spectral methods using (2N 1 1)(2M 1 1) modes. This istween the one-dimensional function f (x) (the ‘‘restric-

tion’’) and the two-dimensional function f2(x, y) (the ‘‘ex- illustrated in Fig. 1 which shows the clustering and its
two-dimensional unfolding. The correspondence is showntension’’) is one-to-one. It is then equivalent to work, for

example, with a one-dimensional quasi-periodic function by arrows.
By our procedure, storage has been reduced by a factoror with its two-dimensional periodic extension. In practice,
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O(t) and CPU work is down by at least the same factor scale perturbation, so as to be able to ignore the nonlinear
term in (8), and scale separations of 25 and 100 (t 5 1/25(there is an additional log(1/t) factor).

Let us observe that our procedure is actually a numerical and 1/100) and various values of the molecular viscosity.
To obtain the numerical value of naeddy we started withmanifestation of the multiscale technique in which the orig-

inal variables are split up into ‘‘fast’’ and ‘‘slow.’’ For exam- an initial condition v of small amplitude having all the
energy in the largest scale (lowest Fourier mode k 5 1).ple, the derivative performed in the Fourier space becomes

the multiplication by i(nK 1 m). In addition, with our We then calculated naeddy by watching the decay of the
amplitude in the lowest mode: the logarithmic time deriva-method, there is no difficulty calculating the solution when

the scale separation and/or the large-scale amplitude are tive b(t) of the amplitude of this mode converges for long
times to 2naeddy . Figure 2 shows that, after relaxation offinite rather than small.
transients, 2b(t) converges to its theoretically predicted

3.2. An Example: Eddy Viscosity and the value.
Burgers Equation in One Dimension We have also repeated the calculation using a standard

pseudo-spectral code which simultaneously resolves theWe used the method of extension of the dimension to
small and large scales. The same numerical results werecalculate the eddy viscosity of the forced Burgers equation:
obtained. The storage using our method varies linearly
with the separation of scales 1/t as predicted: a factor 3

­t u 1 u­x u 5 n­ 2
x u 1 f. (6) for a ratio of scales of 25 and a factor 12 for a ratio of 100,

as we were using 8 Fourier coefficients in the fast variables.
The force is assumed time-independent and spatially peri- The number of Fourier coefficients in the slow variables
odic, say of period 2f. There is then a unique time-indepen- was 64.
dent solution u(x) with the same period, which is here Our technique can also be used to calculate the ‘‘vertex
called the ‘‘basic’’ solution. We furthermore assume k f l 5 renormalisation factor,’’ that is, the modification of the
kul 5 0, where angular brackets denote averages over nonlinear term at large scales, which is also predicted by the
one period. theory. For this, a finite amplitude large-scale perturbation

To calculate the eddy viscosity we now add to the basic must be used. This will be presented in Ref. [8].
solution a small perturbation u(x) R u(x) 1 v(x, t), where
v(x, t) is assumed to have a spatial period O(t 21) much
larger than that of the basic solution. The perturbation
satisfies

­tv 1 v­x u 1 u­xv 1 v­xv 5 n­ 2
xv. (7)

If diffusive behavior is present on large scales, it will take
place on a time scale O(t 22). It is thus appropriate to use
a multiscale formalism with the ‘‘fast’’ variables x, t and
the ‘‘slow’’ variables X 5 tx, T 5 t 2t. We are now interested
in the large-scale behavior of the perturbation. For this
purpose we consider V(X, T) 5 kv(x, X, t, T)l, which is
the perturbation averaged over the fast variables x, t.

Using multiscale analysis, it may be shown that V satis-
fies, to leading order, an unforced Burgers equation with
the viscosity and the (nonlinear term) vertex renormalized
by the same constant aeddy , which can be obtained analyti-
cally [7],

­tV 1 aeddy(V­xV 2 n­ 2
xV) 5 0; (8)

aeddy 5 [kexp(c/n)l kexp(2c/n)l]21, (9)

FIG. 2. Comparison of the theoretically predicted eddy viscositieswhere c is the primitive of u such that kcl 5 0.
naeddy (dashed lines) with values obtained by our higher dimension

To validate our numerical multiscale method we per- multiscale method (scale separation, 25) by watching the relaxation of
formed numerical simulations of (7) using our method of the largest mode (continuous lines) for three values of the viscosity

as labelled.extension of the dimension. We took a low amplitude large-
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difficulty is present in the natural two-dimensional repre-
sentation. With that representation the number of modes
needed after numerical truncation does not depend on how
irrational t is, whereas a good one-dimensional periodic
approximation requires preposterous storage and work. In
other words in a one-dimensional periodic representation
two modes with wavenumbers differing by a small amount
Dk cannot be discriminated unless the period is at least
O(1/Dk).

When actually trying to numerically solve PDEs with
quasi-periodic coefficients, certain difficulties, not present
in the periodic case, can be expected, irrespective of the
use of a standard pseudo-spectral method or the higher
dimension method. The main difficulty has to do with de-
nominators: large values of n and m ensure smallness of
the coefficients but the dissipation, usually proportional to

FIG. 3. Two-dimensional unfolding of Fourier space for the quasi- k2 5 (n 1 mt)2, need not be large. Hence interactionsperiodic case. The arrows show the map from (n, m) to k 5 n 1 mt
involving high (n, m) modes with small uku can lead to(circles to black dots).
unpleasant resonances. When a parameter controlling the
dissipation, say the viscosity, is decreased the amount of
resolution required may therefore increase dramatically.

4. THE QUASI-PERIODIC CASE

4.2. An Example: Eddy Viscosity and Two-Dimensional
4.1. Theory

Quasi-Periodic Flow
Quasi-periodic functions occur in a variety of different

We are here interested in the response of a prescribed
mathematical and physical problems, for example, in celes-

two-dimensional incompressible ‘‘basic’’ flow u(r) to a
tial mechanics [5], crystallography [9], and spectral theory

weak uniform shear. It is well known that, provided that
of Schrödinger operators [1]. Such functions are interesting

the basic flow is parity invariant (possesses a center of
not only for their own sake but also because of their inter-

symmetry), the leading-order response is a flux of momen-
mediate status between periodic and random functions.

tum Fi j linearly proportional to the applied shear ­ivj . In
A quasi-periodic function with only two incommensu-

general the relation involves a fourth order tensor ni jlm ,
rate wavenumbers, say 1 and t, has by definition the gener-

called the eddy viscosity:
alized Fourier representation (1), in which the coefficients
f̂ (n, m) must decrease exponentially for large values of

Fi j 5 2ni jkl ­kvl . (11)sup(unu, umu) [5]. The wavenumbers k 5 n 1 mt are dense
on the real line. Hence a truncation of the form uku # kmax

The general theory of the eddy viscosity can be found instill leaves infinitely many k’s. A natural truncation which
[11], where it is shown that the eddy viscosity is expressibleleaves only O(k2

max) numbers of degrees of freedom is
in terms of the solution of the Navier–Stokes equation
linearized around the basic flow u:sup(unu, umu) # kmax . (10)

­tvi 1 ­j (uivj 1 ujvi ) 5 2­i P 1 n­2
j jvi , ­jvj 5 0. (12)The Fourier geometry of quasi-periodicity is illustrated

in Fig. 3 for kmax 5 2. The wavenumbers on the real line
are obtained from the regular two-dimensional integer lat- Numerical implementation for periodic two-dimensional

basic flow may be found in [10]. Solving the linearizedtice by oblique projection parallel to the line of slope 21/t
so that (n, m) is mapped onto n 1 mt. Observe that the Navier–Stokes equation with quasi-periodic flow has, to

the best of our knowledge, never been attempted. This isblack dots are not clustered as in the multiscale case but
appear ‘‘irregularly’’ distributed. however of considerable interest because it is known that,

in two dimensions, rotational symmetry of order n withWe can of course, design a uniform grid of wavenumbers
such that the irrational numbers n 1 mt within the trunca- n . 5 implies isotropy of all fourth order tensors, and

hence of the eddy viscosity. Within the framework of peri-tion range are arbitrarily close to that grid. However, if t
is an irrational number poorly approximated by rationals odic flow the only possible instance is six-fold symmetry,

which corresponds to a triangular lattice. Indeed, there(e.g., the golden mean t 5 (Ï5 2 1)/2) extremely fine
grids are needed to get good approximations. No such exists no regular periodic tiling of the two-dimensional
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In order to compare our higher dimension calculation
with a standard calculation using a two-dimensional
pseudo-spectral method, we should approximate the irra-
tional Ï2 by a rational number p/q. In order to be able
to represent essentially the same harmonics as in the higher
dimensional case with 164 modes we need at least (16p)2

modes. We thus used the approximation Ï2 P 7/5 and
2562 modes. In a rational approximation the eight-fold
symmetry reduces actually to an exact four-fold symmetry,
but one very close to the original eight-fold symmetry. Still,
four-fold symmetry allows the presence of one spurious
anisotropic tensor in the eddy viscosity. In Fig. 5 the dia-
monds give the isotropic part of the eddy viscosity which
is, for the range of molecular viscosity used here, within one
percent of the result from the (numerically more accurate)
higher dimensional method. There is also, as predicted, a
spurious anisotropic contribution, shown as squares, which
reaches values up to 6 percent of the isotropic part.

For values of the molecular viscosities less than 0.2 (not
shown) the numerics deteriorate very quickly unless much
higher resolution is used. This is caused by resonances of
the sort discussed in Section 4.FIG. 4. Streamfunction of the eight-fold symmetrical quasi-periodic

flow, the eddy viscosity of which is determined by our method.

plane with more than six-fold symmetry. All other rota-
tional symmetries can be implemented only with quasi-
periodic tilings.

Eight-fold rotational symmetry is particularly easy to
implement since it requires only two incommensurable
length scales, say 1 and Ï2. A simple way to construct a
flow with such symmetry is to excite a finite set of wave-
vectors of the form

k 5 (n1 1 n2 Ï2, n3 1 n4 Ï2), (13)

where n1 , n2 , n3 , and n4 are integers, and then to perform
rotations by 2fj/8 for j 5 1, ..., 8. Figure 4 shows an example
of the streamfunction of such a flow which has 8 3 4 5
32 different wavevectors excited. The eight-fold symmetry
is very conspicuous.

We have applied our higher dimension method to solv-
ing the linearized Navier–Stokes equation (12) and evalu-
ating the eddy viscosity which here reduces to a number,
because of the isotropy implied by the eight-fold symmetry.
Since the basic flow has two dimensions and there are two
incommensurable scales, our method leads to solving a
four-dimensional periodic PDE. The circles in Fig. 5 give

FIG. 5. Eddy viscosity of the quasi-periodic flow shown in Fig. 4. Thethe variation of the eddy viscosity with the molecular vis-
circles correspond to our higher dimensional method using 164 modes.cosity for the flow shown in Fig. 4. Our calculations used
The diamonds are obtained using a standard two-dimensional pseudo-

164 modes and we checked that high order harmonics are spectral method applied to a periodic approximation with 2562 modes;
well damped within the range of molecular viscosities this also gives a spurious anisotropic contribution to the eddy viscosity,

shown as squares.shown.
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